寻找两个正序数组的中位数
Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
这是力扣题库中难度指数困难的题,寻找两个正序数组的中位数
这题的难点在于题目要求算法的时间复杂度为**O(log(m+n))**。如果使用归并的方式,归并两个数组,得到归并有序数组后取中位数的方式的话,这样时间复杂度是 **O(m+n)**,达不到题目的要求。
如何把时间复杂度降低到 O(log(m+n)) 呢?如果对时间复杂度的要求有 log,通常都需要用到二分查找,这道题也可以通过二分查找实现。
根据中位数的定义,当 m+n 是奇数时,中位数是两个有序数组中的第 (m+n)/2 个元素(整数除法),当 m+n 是偶数时,中位数是两个有序数组中的第 (m+n)/2 个元素和第 (m+n)/2+1 个元素的平均值。因此,这道题可以转化成寻找两个有序数组中的第 k 小的数,其中 k 为 (m+n)/2 或 (m+n)/2+1。
假设两个有序数组分别是 A 和 B。要找到第 k 个元素,我们可以比较 A[k/2−1] 和 B[k/2−1],其中 / 表示整数除法。由于 A[k/2−1] 和 B[k/2−1] 的前面分别有 A[0..k/2−2] 和 B[0..k/2−2],即 k/2-1k/2−1 个元素,对于 A[k/2−1] 和 B[k/2−1] 中的较小值,最多只会有 (k/2−1)+(k/2−1)≤k−2 个元素比它小,那么它就不能是第 k 小的数了。
因此我们可以归纳出三种情况:
如果 A[k/2−1]<B[k/2−1],则比 A[k/2−1] 小的数最多只有 A 的前 k/2−1 个数和 B 的前 k/2−1 个数,即比 A[k/2−1] 小的数最多只有 k−2 个,因此 A[k/2−1] 不可能是第 k 个数,A[0] 到 A[k/2−1] 也都不可能是第 k 个数,可以全部排除。
如果 A[k/2−1]>B[k/2−1],则可以排除 B[0] 到 B[k/2−1]。
如果 A[k/2−1]=B[k/2−1],则可以归入第一种情况处理。

比较 A[k/2−1] 和 B[k/2−1] 之后,可以排除 k/2 个不可能是第 k 小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少 k 的值,这是因为我们排除的数都不大于第 k 小的数。
另外就是需要考虑一些边界情况了,下面是 leetcode 官方给出的 python 版本:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
| class Solution: def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: def getKthElement(k): """ - 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较 - 这里的 "/" 表示整除 - nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个 - nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个 - 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个 - 这样 pivot 本身最大也只能是第 k-1 小的元素 - 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组 - 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组 - 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数 """
index1, index2 = 0, 0 while True: if index1 == m: return nums2[index2 + k - 1] if index2 == n: return nums1[index1 + k - 1] if k == 1: return min(nums1[index1], nums2[index2])
newIndex1 = min(index1 + k // 2 - 1, m - 1) newIndex2 = min(index2 + k // 2 - 1, n - 1) pivot1, pivot2 = nums1[newIndex1], nums2[newIndex2] if pivot1 <= pivot2: k -= newIndex1 - index1 + 1 index1 = newIndex1 + 1 else: k -= newIndex2 - index2 + 1 index2 = newIndex2 + 1
m, n = len(nums1), len(nums2) totalLength = m + n if totalLength % 2 == 1: return getKthElement((totalLength + 1) // 2) else: return (getKthElement(totalLength // 2) + getKthElement(totalLength // 2 + 1)) / 2
|
leetcode 官方参考连接